*WIRRAL

Mathematics

West Kirby Primary School

This progression document is intended to support the teaching of written calculation strategies and is complimented by a sequence of CPD to secure subject knowtedge.

The progression line reflects the expectations (set out within the appendix National Curriculum 2014)

It is intended to be a working document.

Progression in Addition

Addition is commutative
Addition of positive numbers will give a larger answer than the start number as you are adding to the set.

Simpler Case \rightarrow Crossing boundary \rightarrow ' 0 ' as a place holder \rightarrow Both involved \rightarrow Mixed number of digits \rightarrow More than 2 sets involved

Context based experiences at each level of development - money, measures, reab-life

Developmental

EY \& Y1

Use of ohjects, number tracks \& number lines, counters and base ten.

$$
3+4=7
$$

see progression - counting to calculating

Part Whote Model

First, then, now

First there were
Then
more were added.
Now there is

- Understanding of place value places

Add multiples of 10 (100) fluently
Partition numbers into 100 s 10 s 1 s and recombining
Fluent in adding single digit numbers to 20

Expanded

Standard Algorithm

Worked examples

$789+642$ becomes

$$
\begin{array}{r}
789 \\
+\quad 642 \\
\\
\hline 143 \\
\hline 1
\end{array}
$$

Answer: 1431
$1 s+1 s \quad 10 s 1 s+1 s \quad 10 s 1 s+10 s 1 s \quad 100 s 10 s 1 s+1 s \quad 100 s 10 s 1 s+10 s 1 s$

Misconceptions

- Estimating first to see if their answer 'makes sense'
- Setting out when working in columns confusion over the place value
- Confusion of 'teen' and 'ty'
- Number bonds not always quick rapid recall
- Confuse vocabulary more/less, add/subtract, difference between, 1 's not units
- Starting from the left
- Decimal points not lined up
- Forgetting to add the digit that has been carried
- Missing numbers in calculations e.g. ___ $+71=95$
- Balancing calculations e.g. $21+\ldots{ }_{50}=\underset{---}{ }+12$
- Vocabulary - the word Sum is to be used only when adding.

Models \& Images

Linked Vocabulary

Add
More
Sum
Total
Equals
Is equal to
Greater
Plus
Addition
Increase
Subitise

Progression in Subtraction

- Can be removal from set or finding the difference It is NOT commutative

$1 s-1 s \quad 10 s 1 s-1 s \quad 10 s 1 s-10 s 1 s \quad 100 s 10 s 1 s-1 s \quad 100 s 10 s 1 s-10 s 1 s$
$100 s 10 s 1 s-100 s 10 s 1 s \quad 1000 s 100 s 10 s 1 s \quad 1 s-0.1 s \quad 1 s \quad 0.1 s-0.1 s \quad$ Mixed whote numbers \& decimals

Misconceptions

- Estimating first to see if their answer 'makes sense'
- Setting out when working in columns confusion over the place value
- Confusion of 'teen' and 'ty'
- Using in number line - count start number so calculation is out by 1
- Misunderstanding regarding place value and concept of exchanging 10 s for $1 \mathrm{~s}, 100 \mathrm{~s}$ for 10s etc
- Lack of understanding that when subtracting from a number that the answer will be smaller than start number as removing from it
- Children switch the digits around to be able to 'do' the calculation (believe it is commutative as with $+/ x$)
- Forget to carry (regroups) and or putting the carried number as part of the answer.
- Missing number problems e.g. _- $-24=$

45

- Choosing which method to use
- Decomposition with zeros e.g. 6004-1256=

Models \& Images

$1000000000-1$

Linked Vocabulary

Take

Take-away
Leave
Left
Fewer
Less than
Decrease
Difference between
Minus
Subtract
Subtraction
Equals / equal to

Progression in Multiplication (short multipication)

Simpler Case ($1 \times 10 / 100$ - as in examples given) \rightarrow Multiples of 10/100 (3×235) \rightarrow ' 0 ' as a place holder \rightarrow Both involved \rightarrow Mixed number of digits

Developmental

$$
\text { Y1 \& } 2
$$

$$
3 \times 5=15
$$

Use of objects, number tracks \& number lines. Link

Representation as an array using a variety of apparatus (Dienes, pegs, counters etc)

Bar Model

- Recall tables up to 12×12 (by the end Y4 within 6 seconds)
- Partition numbers into 100 s 10 s 1 s
- Multiply by $10 / 100$ / 1000
- Secure addition strategy for calculating total

Expanded
Teach these side by side
Standard Algorithnt

Grid Method

126 $\times \quad 3$

378

Worked examples

$$
2741 \times 6 \text { becomes }
$$

NB. As children become secure in this
method there may no longer be a need
to write the calculations in brackets

$$
\begin{array}{llll}
2 & 7 & 4 & 1
\end{array}
$$

Answer: 16446

| $1 s \times 1 s$ | $1 s \times 10 s 1 s$ | $1 s \times 100 s 10 s 1 s$ | $1 s \times 1000 s 100 s 10 s 1 s$ | $1 s \times 0.1 s$ | $1 s+0.1 . s 0.01 s$ |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| Mixed whole numbers |
| :--- |
| \& decimals |

Simpler Case ($1 \times 10 / 100$ - as in examples given) \rightarrow Multiples of 10/100 (3×235) \rightarrow ' 0 ' as a place holder \rightarrow Both involved \rightarrow Mixed number of digits Context based experiences at each level of development - money, measures, reab-life

Developmental Y1 \& 2

$$
3 \times 5=15
$$

Use of objects, number tracks \& number lines. Link initially to repeated +

Representation as an array using a variety of apparatus (Dienes, pegs, counters etc)

Times tables and associate division facts.

$$
4 \times 5=\begin{aligned}
& 00000 \\
& 000000 \\
& 000 \circ \circ \\
& 00000
\end{aligned}
$$

Practical work

NB. use apparatus to model $10 s 1 s \times 10 s 1 s$ \& $100 \mathrm{~s} 10 \mathrm{~s} 1 \mathrm{~s} \times 10 \mathrm{~s} 1 \mathrm{~s} \mathrm{etc}$.

Expanded Y3 \& 4

Standard Algorithm Y5 \& 6

$$
\begin{aligned}
& 14 \times 13=182 \\
& 14 \times 10=140
\end{aligned}
$$

$$
14 \times 3=42
$$

14
$\times 13$

42
140
182

- Recall tables up to 12×12 (by the end Y4)
- Partition numbers into 100 s 10 s 1 s
- Multiply by 10/100
- Secure addition strategy calculating total

Misconceptions

- Understanding on multiplying by $10 / 100$ and what happens to place value of the number
- Rapid recall of multiplication tables is not secure and impacting of accuracy of calculation
- Interpretation of digits in the T/H columns as single digits eg 4×3 instead of 4×30
- Carrying units - either forgetting to carry or putting the number in the wrong column/place
- Place value, particularly with decimals.
- Long multiplication, using zero as a place holder
- Doubles \& near doubles
- Multiplying by $\frac{1}{2}$

Models \& Images

Linked Vocabulary

Repeated addition
Groups of
Lots of
Multiple
Multiply
Multiplication
Times
Product
Array

Misconceptions

- Lack of understanding of 'remainders' and their importance to the context of the problem
- Insecure understanding of place value to know what each digit is representing
- Unable to derive facts from known facts, and 'play' with numbers
- Approximations are wildly inaccurate so answers cannot be judged in the context of the problem/calculation
- No method to 'gall back' on where use of a formal method won't work
- Insecure with inverse operations
- When there is a remainder, is the answer rounded up (depending on the context)
- Halving and near halves.
- Starting in calculation in the wrong place

Models \& Images

Divisor
Divisible
Divide
Group Share Chunk Remainder Sharing / shared Equal groups

Supporting Materials

Opportunities to develop
number pairs for numbers up
to 10

Recall number bonds to 10
Exploring recording using symbols (modelled)

NB. Opportunities for children to meet these 5 core skills should be integrated. Children DO NOT have to be able to recite ALL
numbers before they move to calculation. For example, if they are able to recite numbers to 3 then they can $1: 1$, compare, add and subtract up to 3 .

Counting into Calculating - A guide to progression

wern	$\text { wern } 2$	$\text { Hery } 3$	$\text { Year } 4$	$\text { Year } 5$	$\text { Year } 6$
Pupils should be taught to: read, write and interpret mathematical statements involving addition (+), subtraction $(-)$ and equals (=) signs. represent and use number bonds and related subtraction facts within 20 add and subtract onedigit and two-digit numbers to 20, including zero solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems.	Pupils should be taught to: - solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 - add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens, two two-digit numbers adding three one-digit numbers show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot - recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	Pupils should be taught to: - add and subtract numbers mentally, including: a three-digit number and ones a three-digit number and tens. a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction - estimate the answer to a calculation and use inverse operations to check answers - solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.	Pupils should be taught to: - add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate - estimate and use inverse operations to check answers to a calculation - solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Pupils should be taught to: - add and subtract whote numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with increasingly large numbers. - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Pupils should be taught to: - use their knowledge of the order of operations to carry out calculations involving the four operations. - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why

wern	$\text { Hery } 2$	$\text { Yery } 3$			12006
Pupils should be taught to: - solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arroys. with the support of the teacher	Pupils should be taught to: - recall and use multiplication and division factsfor the 2, 5 and 10 multiplication tables, including recognising odd and even numbers - calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs. - show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot - solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in context	Pupils should be taught to: - recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables - write and calculate mathematical statementsfor multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods - solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.	Pupils should be taught to: - recall multiplication and division facts for multiplication tables up to 12×12 - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations - multiply two-digit and three-digit numbers by a one-digit number using Sormal written layout - solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems. such as n objects are connected to m objects.	Pupils should be taught to. - multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers - multiply and divide numbers mentally drawing upon known facts - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - multiply and divide whote numbers and those involving decimals by 10, 100 and 1000 - solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes. - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign - solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	Pupils should be taught to: - multiply multi-digit numbers up to 4 digits by a two-digit whote number using the formal written method of long multiplication - divide numbers up to 4 digits. by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context - divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context - use their knowledge of the order of operations to carry out calculations involving the four operations - solve problems involving addition, subtraction, multiplication and division - use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

